<b id="yfvhu"><address id="yfvhu"></address></b>
  1. <table id="yfvhu"><acronym id="yfvhu"><thead id="yfvhu"></thead></acronym></table>
  2. <source id="yfvhu"><td id="yfvhu"><output id="yfvhu"></output></td></source>

      [1]姚建均,李鳳甡,陳俊華,等.垂直軸阻力型Savonius水輪機發展現狀[J].哈爾濱工程大學學報,2020,41(2):298-308.[doi:10.11990/jheu.201905056]
       YAO Jianjun,LI Fengshen,CHEN Junhua,et al.Research on a vertical-axis drag-type Savonius hydrokinetic turbine[J].hebgcdxxb,2020,41(2):298-308.[doi:10.11990/jheu.201905056]
      點擊復制

      垂直軸阻力型Savonius水輪機發展現狀(/HTML)
      分享到:

      《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

      卷:
      41
      期數:
      2020年2期
      頁碼:
      298-308
      欄目:
      出版日期:
      2020-02-05

      文章信息/Info

      Title:
      Research on a vertical-axis drag-type Savonius hydrokinetic turbine
      作者:
      姚建均1 李鳳甡1 陳俊華2 蘇振興1 余潔1
      1. 哈爾濱工程大學 機電工程學院, 黑龍江 哈爾濱 150001;
      2. 浙江大學寧波理工學院 機能學院, 浙江 寧波 315100
      Author(s):
      YAO Jianjun1 LI Fengshen1 CHEN Junhua2 SU Zhenxing1 YU Jie1
      1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
      2. College of Mechanical and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
      關鍵詞:
      Savnoius型水輪機阻力型研究方法優化基本參數輔助機構功率系數葉尖速比
      分類號:
      TK737
      DOI:
      10.11990/jheu.201905056
      文獻標志碼:
      A
      摘要:
      為了改善化石能源日益枯竭及其造成環境惡化的問題,Savonius型垂直軸水輪機作為一種潔凈新能源發電裝置得到廣泛關注。結合國內外S型水輪機發展歷程和現狀,從介紹水輪機性能分析方法入手,對S型水輪機的基本參數和輔助機構進行分類和歸納,再解釋并評述了不同條件下的性能影響機理和優缺點,并分析了參數和結構優化技術特點盛兴娱乐登陆。指出通過改善S型水輪機的基本參數和增加輔助機構可有效提高水輪機的發電效率和穩定性盛兴娱乐登陆,并對現階段面臨的問題以及未來的發展趨勢進行總結和預測,旨在為提高S型水輪機發電效率的研究員和工程設計者提供參考。

      參考文獻/References:

      [1] 胡敏. 《能源發展戰略行動計劃(2014-2020年)》正式發布[J]. 煉油技術與工程, 2015, 45(1):42.HU Min. Energy Development Strategic Action Plan (2014-2020) was officially released[J]. Refining and technical engineering, 2015, 45(1):42.
      [2] 夏登文, 康健. 海洋能開發利用詞典[M]. 北京:海洋出版社, 2014:150-163.XIA Dengwen, KANG Jian. Dictionary of ocean energy[M]. Beijing:Ocean Press, 2014:150-163.
      [3] Gerald L Wick, Walter R Schmitt. Harvesting ocean energy[M]. United Nations Educational:Scientific and Cultural Organization, 1981:68-75.
      [4] 王燕, 劉邦凡, 趙天航. 論我國海洋能的研究與發展[J]. 生態經濟, 2017, 33(4):102-106.WANG Yan, LIU Bangfan, ZHAO Tianhang. On the research and development of marine energy in China[J]. Ecological economy, 2017, 33(4):102-106.
      [5] 劉偉民, 麻常雷, 陳鳳云, 等. 海洋可再生能源開發利用與技術進展[J]. 海洋科學進展, 2018, 36(1):1-17, 18.LIU Weimin, MA Changlei, CHEN Fengyun, et al. Exploitation and technical progress of marine renewable energy[J]. Advances in marine science, 2018, 36(1):1-17, 18.
      [6] Agency(irena) International Renewable Energy. Ocean energy technology:Innovation, patents, market status and trends[R]. Abu Dhabi:IRENA, 2014.
      [7] JAOHINDY P, MCTAVISH S, GARDE F, et al. An analysis of the transient forces acting on Savonius rotors with different aspect ratios[J]. Renewable energy, 2013, 55:286-295.
      [8] KAMOJI M A, KEDARE S B, PRABHU S V. Experimental investigations on single stage, two stage and three stage conventional Savonius rotor[J]. International journal of energy research, 2008, 32(10):877-895.
      [9] SAVONIUS S J. The S-rotor and its applications[J]. Mechanical engineering, 1931, 53(5):333-338.
      [10] GLAUERT H. Airplane propellers[M]//Aerodynamic Theory. Berlin:Springer, 1935:169-360.
      [11] TEMPLIN R J. Aerodynamic performance theory for the NRC vertical-axis wind turbine[R]. NRC of Canada TR. LTR-LA-160. Ottawa, ON, Canada:National Research Council of Canada, 1974.
      [12] STRICKLAND J H. The Darrieus turbine:A performance prediction model using multiple streamtubes[R]. SAND75-0431. Albuquerque:Sandia National Laboratories, 1975:1-31.
      [13] PARASCHIVOIU I. Aerodynamic loads and performance of the Darrieus rotor[J]. Journal of energy, 1981, 6:406-412.
      [14] SHARPE D J. Wind turbine aerodynamics[M]//FRERIS L L. Wind Energy Conversion System. Hemel Hempstead:Prentice Hall, 1990:54-118.
      [15] 張亮, 汪魯兵, 李鳳來, 等. 豎軸變攻角潮流發電水輪機性能預報流管模型研究[J]. 哈爾濱工程大學學報, 2004, 25(3):261-266.ZHANG Liang, WANG Lubing, LI Fenglai, et al. Streamtube models for performance prediction of vertical-axis variable-pitch turbine for tidal current energy conversion[J]. Journal of Harbin Engineering University, 2004, 25(3):261-266.
      [16] WILSON R E, LISSAMAN P B S, WALKER S N. Aerodynamic performance of windturbines.ERDA/NSF/04014-7611. 1976:111-64.
      [17] VAN DUSEN E S, KIRCHHOFF R H. A two dimensional vortex sheet model of a Savonius rotor[C]//Fluids Engineering in Advanced Energy Systems. Proceedings of the Winter Annual Meeting. New York:American Society of Mechanical Engineers, 1978:15-31.
      [18] OGAWA T. Theoretical study on the flow about savonius rotor[J]. Journal of fluids engineering, 1984, 106(1):85-91.
      [19] FERNANDO M S U K, MODI V J. A numerical analysis of the unsteady flow past a Savonius wind turbine[J]. Journal of wind engineering and industrial aerodynamics, 1989, 32(3):303-327.
      [20] AFUNGCHUI D, KAMOUN B, HELALI A, et al. The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method[J]. Renewable energy, 2010, 35(1):307-313.
      [21] AFUNGCHUI D, KAMOUN B, HELALI A. Vortical structures in the wake of the savonius wind turbine by the discrete vortex method[J]. Renewable energy, 2014, 69:174-179.
      [22] ALTAN B D, ATILGAN M. An experimental and numerical study on the improvement of the performance of Savonius wind rotor[J]. Energy conversion and management, 2008, 49(12):3425-3432.
      [23] ZULLAH M A, LEE Y H. Performance evaluation of a direct drive wave energy converter using CFD[J]. Renewable energy, 2013, 49:237-241.
      [24] FERRARI G, FEDERICI D, SCHITO P, et al. CFD study of Savonius wind turbine:3D model validation and parametric analysis[J]. Renewable energy, 2016, 105:722-734.
      [25] KERIKOUSA E, THÉVENIN D. Optimal shape of thick blades for a hydraulic Savonius turbine[J]. Renewable energy, 2019, 134:629-638.
      [26] MURAI Y, NAKADA T, SUZUKI T, et al. Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine[J]. Measurement science and technology, 2007, 18(8):2491-2503.
      [27] AHMED M R, FAIZAL M, LEE Y H. Optimization of blade curvature and inter-rotor spacing of Savonius rotors for maximum wave energy extraction[J]. Ocean engineering, 2013, 65:32-38.
      [28] SHIGETOMI A, MURAI Y, TASAKA Y, et al. Interactive flow field around two Savonius turbines[J]. Renewable energy, 2010, 36(2):536-545.
      [29] PATEL V, ELDHO T I, PRABHU S V. Theoretical study on the prediction of the hydrodynamic performance of a Savonius turbine based on stagnation pressure and impulse momentum principle[J]. Energy conversion and management, 2018, 168:545-563.
      [30] MAHMOUD N H, EL-HAROUNA A A, WAHBA E, et al. An experimental study on improvement of Savonius rotor performance[J]. Alexandria engineering journal, 2012, 51(1):19-25.
      [31] PATEL V, BHAT G, ELDHO T I, et al. Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine[J]. International journal of energy research, 2017, 41(6):829-844.
      [32] FUJISAWA N. On the torque mechanism of Savonius rotors[J]. Journal of wind engineering and industrial aerodynamics, 1992, 40(3):277-292.
      [33] ALEXANDER A J, HOLOWNIA B P. Wind tunnel tests on a savonius rotor[J]. Journal of wind engineering and industrial aerodynamics, 1978, 3(4):343-351.
      [34] KAMOJI M A, KEDARE S B, PRABHU S V. Experimental investigations on single stage modified savonius rotor[J]. Applied energy, 2009, 86(7/8):1064-1073.
      [35] BHAYO B A, AL-KAYIEM H H. Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system[J]. Energy, 2017, 138:752-763.
      [36] 趙振宙, 鄭源, 周大慶, 等. 基于數值模擬Savonius風力機性能優化研究[J]. 太陽能學報, 2010, 31(7):907-911.ZHAO Zhenzhou, ZHENG Yuan, ZHOU Daqing, et al. Optimization of the performance of savonius wind turbine based on nuerical study[J]. Acta energiae solaris sinica, 2010, 31(7):907-911.
      [37] 邊佩翔, 楊志宏, 王勇, 等. Savonius式水輪機水動力學性能[J]. 浙江大學學報(工學版), 2018, 52(2):268-272.BIAN Peixiang, YANG Zhihong, WANG Yong, et al. Hydrodynamic performance of Savonius water turbine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2):268-272.
      [38] MABROUKI I, DRISS Z, ABID M S. Performance analysis of a water savonius rotor:effect of the internal overlap[J]. Sustainable energy, 2014, 2(4):121-125.
      [39] KAMOJI M A, KEDARE S B, PRABHU S V. Performance tests on helical Savonius rotors[J]. Renewable energy, 2009, 34(3):521-529.
      [40] TALUKDAR P K, SARDAR A, KULKARNI V, et al. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations[J]. Energy Conversion and Management, 2018, 158:36-49.
      [41] ROSMIN N, JAUHARI A S, MUSTAAMAL A H, et al. Experimental Study for the single-stage and double-stage two-bladed savonius micro-sized turbine for Rain Water Harvesting (RWH) system[J]. Energy procedia, 2015, 68:274-281.
      [42] SAHA U K, THOTLA S, MAITY D. Optimum design configuration of Savonius rotor through wind tunnel experiments[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(8/9):1359-1375.
      [43] 田文龍, 宋保維, 毛昭勇. 橢圓葉片Savonius風力機葉輪氣動性能數值計算[J]. 中國電機工程學報, 2014, 34(32):5796-5802.TIAN Wenlong, SONG Baowei, MAO Zhaoyong. Numerical investigation of a savonius wind turbine with elliptical blades[J]. Proceedings of the CSEE, 2014, 34(32):5796-5802.
      [44] KUMAR A, SAINI R P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J]. Renewable energy, 2017, 113:461-478.
      [45] KUMAR A, SAINI R P. Performance analysis of a Savonius hydrokinetic turbine having twisted blades[J]. Renewable energy, 2017, 108:502-522.
      [46] 丁濤, 劉繼昂, 方露夢, 等. 基于多次Bezier曲線的Savonius風力機葉片優化設計[J]. 太陽能學報, 2017, 38(4):959-965.DING Tao, LIU Ji’ang, FANG Lumeng, et al. Optimization design of savonius wind turbine blade based on multiple bezier curve[J]. Acta energiae solaris sinica, 2017, 38(4):959-965.
      [47] ZHOU Qinanwei, XU Zhang, CHENG Shengyong, et al. Innovative Savonius rotors evolved by genetic algorithm based on 2D-DCT encoding[J]. Soft computing, 2018, 22(23):8001-8010.
      [48] TARTUFERI M, D’ALESSANDRO V, MONTELPARE S, et al. Enhancement of Savonius wind rotor aerodynamic performance:a computational study of new blade shapes and curtain systems[J]. Energy, 2015, 79:371-384.
      [49] 王偉, 宋保維, 毛昭勇, 等. Savonius風機葉輪雙側外形優化設計[J]. 哈爾濱工程大學學報, 2019, 40(2):254-259, 272.WANG Wei, SONG Baowei, MAO Zhaoyong, et al. Optimization of Savonius wind turbine impeller with bilateral contour[J]. Journal of Harbin Engineering University, 2019, 40(2):254-259, 272.
      [50] OSTOS I, RUIZ I, GAJIC M, et al. A modified novel blade configuration proposal for a more efficient VAWT using CFD tools[J]. Energy conversion and management, 2019, 180:733-746.
      [51] GOLECHA K, ELDHO T I, PRABHU S V. Influence of the deflector plate on the performance of modified Savonius water turbine[J]. Applied energy, 2011, 88(9):3207-3217.
      [52] KUMAR D, SARKAR S. Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis[J]. Energy, 2016, 116:609-618.
      [53] IRABU K, ROY J N. Characteristics of wind power on Savonius rotor using a guide-box tunnel[J]. Experimental thermal and fluid science, 2007, 32(2):580-586.
      [54] YAO Y X, TANG Z P, WANG X W. Design based on a parametric analysis of a drag driven VAWT with a tower cowling[J]. Journal of wind engineering and industrial aerodynamics, 2013, 116:32-39.
      [55] KORPRASERTSAK N, LEEPHAKPREEDA T. Analysis and optimal design of wind boosters for Vertical Axis Wind Turbines at low wind speed[J]. Journal of wind engineering and industrial aerodynamics, 2016, 159:9-18.
      [56] 田文龍, 宋保維, 毛昭勇. 一種新型垂直軸式風機葉輪的數值仿真[J]. 機械工程學報, 2013, 49(18):144-149.TIAN Wenlong, SONG Baowei, MAO Zhaoyong. Numerical simulations of vertical axis wind turbine with controllable blades[J]. Journal of mechanical engineering, 2013, 49(18):144-149.
      [57] 毛昭勇, 田文龍, 丁文俊. 伸縮葉片式垂直軸風機葉輪的數值仿真[J]. 西北工業大學學報, 2015, 33(4):633-638.MAO Zhaoyong, TIAN Wenlong, DING Wenjun. Numerical investigation of a novel vertical axis wind turbine with controllable blades[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):633-638.
      [58] 湯志鵬. 基于Savonius結構的葉片可展式垂直軸風力機性能研究[D]. 哈爾濱:哈爾濱工業大學, 2015.TANG Zhipeng. A study on the performance of vertical axis wind turbine with expandable blades based on the structure of savonius turbine[D]. Harbin:Harbin Institute of Technology, 2015.
      [59] BEHROUZI F, NAKISA M, MAIMUN A, et al. Performance investigation of self-adjusting blades turbine through experimental study[J]. Energy conversion and management, 2019, 181:178-188.

      備注/Memo

      備注/Memo:
      收稿日期:2019-05-15。
      基金項目:黑龍江省自然科學基金(E2018019);中央高;究蒲袠I務費(HEUCFP201733).
      作者簡介:姚建均,男,教授,博士生導師;李鳳甡,男,博士研究生.
      通訊作者:姚建均,E-mail:travisyao@126.com.
      更新日期/Last Update: 2020-03-24
      盛兴娱乐登陆