<b id="yfvhu"><address id="yfvhu"></address></b>
  1. <table id="yfvhu"><acronym id="yfvhu"><thead id="yfvhu"></thead></acronym></table>
  2. <source id="yfvhu"><td id="yfvhu"><output id="yfvhu"></output></td></source>

      [1]吳利紅,張愛鋒,李一平,等.水下機器人試航速度的類物理數值方法預報[J].哈爾濱工程大學學報,2020,41(2):194-198.[doi:10.11990/jheu.201903073]
       WU Lihong,ZHANG Aifeng,LI Yiping,et al.Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method[J].hebgcdxxb,2020,41(2):194-198.[doi:10.11990/jheu.201903073]
      點擊復制

      水下機器人試航速度的類物理數值方法預報(/HTML)
      分享到:

      《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

      卷:
      41
      期數:
      2020年2期
      頁碼:
      194-198
      欄目:
      出版日期:
      2020-02-05

      文章信息/Info

      Title:
      Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method
      作者:
      吳利紅12 張愛鋒1 李一平2 封錫盛2 王詩文1
      1. 大連海事大學 船舶與海洋工程學院, 遼寧 大連 116026;
      2. 中國科學院沈陽自動化研究所 機器人學國家重點實驗室, 遼寧 沈陽 110016
      Author(s):
      WU Lihong12 ZHANG Aifeng1 LI Yiping2 FENG Xisheng2 WANG Shiwen1
      1. College of Ship Building and Ocean Engineering, Dalian Maritime University, Dalian 116026, China;
      2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
      關鍵詞:
      自航試驗水下機器人動網格類物理數值模擬螺旋槳試航速度計算流體力學操縱性
      分類號:
      U661.33
      DOI:
      10.11990/jheu.201903073
      文獻標志碼:
      A
      摘要:
      水下機器人試航速度是評價推進系統性能和續航能力的重要指標。針對水下機器人試航速度預報問題,本文提出類物理數值預報方法盛兴娱乐登陆,建立水下機器人包含槳舵的全附體模型,采用多塊動態混合網格方法進行網格構建和更新盛兴娱乐登陆,編寫用戶自定義函數,求解六自由度方程和非定常雷諾平均NS方程進行水下機器人和螺旋槳力和速度的計算和傳遞盛兴娱乐登陆,實現以螺旋槳旋轉運動推進水下機器人自航的運動過程模擬。數值結果表明:水下機器人試航速度1.5 m/s對應的轉速為570 r/min盛兴娱乐登陆;自航模擬可見螺旋槳梢渦曳出,梢渦強度和螺旋槳推力隨航速增加而降低。數值模擬再現了非定常運動過程中船槳舵相互作用機理,有利于水下機器人復雜操縱運動的精確預報盛兴娱乐登陆。

      參考文獻/References:

      [1] CHASE N, CARRICA P M. Submarine propeller computations and application to self-propulsion of DARPA SUBOFF[J]. Ocean engineering, 2013, 60:68-80.
      [2] PANKAJAKSHAN R, REMOTIGUE S, TAYLOR L, et al. Validation of control-surface induced submarine maneuvering simulations using UNCLE[C]//Proceedings of 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan, 2002.
      [3] POREMBA III J E. Hydrodynamics and maneuvering simulations of a non-body-of-revolution submarine[D]. PA, USA:The Pennsylvania State University, 2009.
      [4] MOFIDI A, CARRICA P M. Simulations of Zigzag maneuvers for a container ship with direct moving rudder and propeller[J]. Computers & fluids, 2014, 96:191-203.
      [5] CARRICA P M, HOSSEINI H S, STERN F. CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers[J]. Computers & fluids, 2012, 53:117-132.
      [6] 沈志榮. 船槳舵相互作用的重疊網格技術數值方法研究[D]. 上海:上海交通大學, 2014:133-162.SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions[D]. Shanghai:Shanghai Jiao Tong University, 2014:133-162.
      [7] 于軍, 聶義勇. 不可壓縮流場多體運動問題的兩種數值解法[J]. 計算力學學報, 2006, 23(5):583-587.YU Jun, NIE Yiyong. Two numerical methods of multi-body movement in incompressible fluid[J]. Chinese journal of computational mechanics, 2006, 23(5):583-587.
      [8] FURQUAN M, NAVROSE, MITTAL S. A fast mesh moving scheme for flow-induced vibrations of rigid bodies[J]. Computers & fluids, 2016, 141:116-123.
      [9] MURAYAMA M, TOGASHI F, NAKAHASHI K, et al. Simulation of aircraft response to control surface deflection using unstructured dynamic grids[C]//20th AIAA Applied Aerodynamics Conference. Louis, Missouri, 2002.
      [10] WU Lihong, LI Yiping, SU Shaojuan, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean engineering, 2014, 85:110-126.
      [11] ZHAN Jiemin, CAI Wenhao, HU Wenqing, et al. Numerical study on the six-DOF anchoring process of gravity anchor using a new mesh update strategy[J]. Marine structures, 2017, 52:173-187.
      [12] 張來平, 鄧小剛, 張涵信. 動網格生成技術及非定常計算方法進展綜述[J]. 力學進展, 2010, 40(4):424-447.ZHANG Laiping, DENG Xiaogang, ZHANG Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in mechanics, 2010, 40(4):424-447.
      [13] ALLEN B, AUSTIN T, FORRESTER N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]//OCEANS 2006. Boston, MA, USA, 2006.
      [14] 吳利紅, 李一平, 劉開周, 等. 基于多塊動態混合網格的AUV自航類物理數值模擬[J/OL]. 機器人:(2019-05-10) https://doi.org/10.13973/j.cnki.robot.180683.DOI:10.13973/j.cnki.robot.180683.WU Lihong, LI Yiping, LIU Kaizhou, et al. Physics-based numerical simulation of AUV self-propulsion using multi-block hybrid dynamic mesh method[J/OL]. Robot:(2019-05-10). https://doi.org/10.13973/j.cnki.robot.180683.DOI:10.13973/j.cnki.robot.180683.
      [15] WEI Yingsan, WANG Yongsheng. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller’s thrust and side-forces[J]. Journal of sound and vibration, 2013, 332(8):2038-2056.

      相似文獻/References:

      [1]郭冰潔,徐玉如,李岳明.水下機器人S面控制器的改進粒子群優化[J].哈爾濱工程大學學報,2008,(12):1277.
       GUO Bing-jie,Xu Yu-ru,LI Yue-ming.S surface controller for underwater vehicles using particle swarm optimization[J].hebgcdxxb,2008,(2):1277.
      [2]毛宇峰,龐永杰,李 曄,等.速度矢量坐標系下水下機器人動態避障方法[J].哈爾濱工程大學學報,2010,(02):159.
       MAO Yu feng,PANG Yong jie,LI Ye,et al.Using a velocity vector coordinate method for dynamic obstacle avoidance of autonomous underwater vehicles[J].hebgcdxxb,2010,(2):159.
      [3]張銘鈞,宋煒胥,褚振忠.自主式水下機器人模糊定性建模方法研究[J].哈爾濱工程大學學報,2013,(01):116.[doi:10.3969/j.issn.1006-7043. 201205069]
       ZHANG Mingjun,SONG Weixu,CHU Zhenzhong.Research on the method of fuzzy qualitative modeling for AUV[J].hebgcdxxb,2013,(2):116.[doi:10.3969/j.issn.1006-7043. 201205069]
      [4]黃海,張強,張樹迪,等.欠驅動AUV自適應編隊控制策略[J].哈爾濱工程大學學報,2015,(05):633.[doi:10.3969/j.issn.1006-7043.201402003]
       HUANG Hai,ZHANG Qiang,ZHANG Shudi,et al.Adaptive formation control strategy for under-actuated AUVs[J].hebgcdxxb,2015,(2):633.[doi:10.3969/j.issn.1006-7043.201402003]
      [5]趙文德,張杰,趙勇,等.大深度海水浮力調節系統研制[J].哈爾濱工程大學學報,2015,(09):1269.[doi:10.11990/jheu.201407040]
       ZHAO Wende,ZHANG Jie,ZHAO Yong,et al.Development of a deep-sea buoyancy regulating system[J].hebgcdxxb,2015,(2):1269.[doi:10.11990/jheu.201407040]
      [6]張榮敏,陳原,高軍.無鰭舵矢量推進水下機器人縱向穩定性研究[J].哈爾濱工程大學學報,2017,38(01):133.[doi:10.11990/jheu.201509089]
       ZHANG Rongmin,CHEN Yuan,GAO Jun.Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J].hebgcdxxb,2017,38(2):133.[doi:10.11990/jheu.201509089]
      [7]李新飛,馬強,袁利毫,等.矢量推進水下機器人的推力分配方法[J].哈爾濱工程大學學報,2018,39(10):1605.[doi:10.11990/jheu.201702042]
       LI Xinfei,MA Qiang,YUAN Lihao,et al.Thrust allocation method of underwater robots with vector propulsion[J].hebgcdxxb,2018,39(2):1605.[doi:10.11990/jheu.201702042]
      [8]姚峰,楊超,張銘鈞,等.水下機器人-機械手末端精度測量方法及誤差分析[J].哈爾濱工程大學學報,2019,40(06):1155.[doi:10.11990/jheu.201805034]
       YAO Feng,YANG Chao,ZHANG Mingjun,et al.End-precision measurement method for autonomous underwater vehicle manipulator systems and its principle error analysis[J].hebgcdxxb,2019,40(2):1155.[doi:10.11990/jheu.201805034]

      備注/Memo

      備注/Memo:
      收稿日期:2019-03-22。
      基金項目:國家重點研發計劃(2017YFC0305901);國家自然科學基金項目(51009016)盛兴娱乐登陆;機器人學國家重點實驗室開放課題(2016-O04);中央高盛兴娱乐登陆;究蒲袠I務費專項資金(3132017030).
      作者簡介:吳利紅,女,副教授;張愛鋒,女,副教授;封錫盛,男,教授,博士生導師,中國工程院院士.
      通訊作者:張愛鋒,E-mail:afzhang@dlmu.edu.cn.
      更新日期/Last Update: 2020-03-24
      盛兴娱乐登陆